This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

THE CRYSTAL AND MOLECULAR STRUCTURE OF A SERIES OF OXO MOLYBDENUM DITHIOCARBAMATES

Louis Ricard^a; Jacques Estienne^a; Petros Karagiannidis^a; Paul Toledano^a; Jean Fischer^a; Andre Mitschler^a; Raymond Weiss^a

^a Institut de Chimie, Université Louis Pasteur, Strasbourg, Cedex, France

To cite this Article Ricard, Louis , Estienne, Jacques , Karagiannidis, Petros , Toledano, Paul , Fischer, Jean , Mitschler, Andre and Weiss, Raymond(1974) 'THE CRYSTAL AND MOLECULAR STRUCTURE OF A SERIES OF OXO MOLYBDENUM DITHIOCARBAMATES', Journal of Coordination Chemistry, 3: 4, 277 – 285

To link to this Article: DOI: 10.1080/00958977408075862

URL: http://dx.doi.org/10.1080/00958977408075862

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem. 1974, Vol. 3, pp. 277-285

THE CRYSTAL AND MOLECULAR STRUCTURE OF A SERIES OF OXO MOLYBDENUM DITHIOCARBAMATES

LOUIS RICARD, JACQUES ESTIENNE, PETROS KARAGIANNIDIS, PAUL TOLEDANO, JEAN FISCHER, ANDRE MITSCHLER AND RAYMOND WEISS

Institut de Chimie¹, Université Louis Pasteur, BP 296/R8, 67008 Strasbourg-Cedex, France

(Received March 28, 1973; in final form July 3, 1973)

The crystal and molecular structure of a series of oxo-molybdenun di-n-propyldithiocarbamates have been studied by X-ray diffraction methods. The compounds studied were di(oxo-di-n-propyldithiocarbamato) molybdenum VI (A), μ -oxo-bis-(di(oxo-di-n-propyldithiocarbamato) molybdenum V) (B), and oxo-bis-di-n-propyldithiocarbamato molybdenum IV (C). Compound A is orthorhombic, space group Pbca, with eight molecules in a unit cell having dimensions a = 16.577(3) Å, b = 18.771(3) Å and c = 13.702(2) Å. The molybdenum V compound (B) crystallizes in the orthorhombic non-centrosymmetric space group Pca2, with four molecules in a unit cell having parameters a = 19.605(6) A, b = 13.491(3) A and c = 16.342(4) A. The last compound (C) is triclinic, space group PI with two molecules in the unit cell. Its crystal parameters are a = 10.183(6) A, b = 13.012(9) A, c = 9.208(5) A' a= 71.57(5)°, β = 105.81(5)° and γ = 81.82(5)°. The intensities were collected by counter techniques using MoKa radiation. All structures were refined by full matrix least-squares, using anisotropic temperature factors for all non-hydrogen atoms. For each compound, respectively, these refinements were conducted on 2795, 3216 and 2346 reflections and the corresponding R factors were 0.052, 0.052 and 0.063. The dioxo molybdenum VI compound contains two oxygen atoms in cis position, as it is usually observed in these compounds. The four sulfur atoms occupy the remaining four positions of an octahedron around molybdenum. This octahedron is deformed by steric interactions between the sulfur atoms. The molybdenum V complex possesses a similar geometry around each molybdenum. A common oxygen atom bridges the two metal atoms. This structure is similar to that of Mo₂O₃(S₂COC₂H₅)₄. The ligand around the molybdenum IV complex form a square pyramid. The four sulfur atoms occupy the basal plane and the oxygen is at the summit of the pyramid.

INTRODUCTION

The catalytic activation of molecular oxygen by transition metal complexes has recently drawn much attention.² The oxidation of tertiary phosphines at close to room temperature constitutes a good model for the study of the activation processes. Several reactions of this type, have been studied with dioxygen complexes of low valent metals.³ Sajus and co-workers have recently found that oxo complexes of molybdenum behave the same way.⁴ A particularly interesting system is that of the oxo molybdenum dithiocarbamates where these workers have shown the existence of an oxido-reduction cycle that is repeated until all the phosphine is oxidized. In order to elucidate some of the factors influencing this reaction, it was decided to study the molecular structure of some of the above mentioned products, namely the molybdenum V and molybdenum IV oxo-dithiocarbamates. In view of the recent report concerning oxidative addition by the latter compound,⁵ knowledge of its structure takes on added interest. Because of the absence of precise structural data on molybdenum VI oxo-dithiocarbamates, and so as to have a coherent set of data, the study of the molecular structure of this compound was also undertaken.

EXPERIMENTAL SECTION

The complex $MoO_2(S_2CN(C_3H_7)_2)_2$ (A) was prepared following the method of Moore.⁶ Crystals suitable for X-ray diffraction measurements were obtained by recrystallization from toluene-hexane. The crystals used for the structure determination of $Mo_2O_3(S_2CN(C_3H_7)_2)_4$ (B) and

 $MoO(S_2CN(C_3H_7)_2)_2(C)$ were kindly supplied by the Institut Francais du Pétrole. These compounds were prepared by reacting in toluene the appropriate stoichiometric amounts of A and triphenylphosphine.⁴

Space group	$MoO_2(S_2CN(C_3H_7)_2)_2$ Pbca	$\frac{Mo_{2}O_{3}(S_{2}CN(C_{3}H_{7})_{2})_{4}}{Pbcmor Pca2_{1}}$	$\frac{\text{MoO}(\text{S}_2\text{CN}(\text{C}_3\text{H}_7)_2)_2}{\text{P}_1 \text{ or } \text{P}_1^-}$
a(A)	16.577(3)	19.605(6)	10.183(6)
b(Å)	18.771(3)	13.491(3)	13.012(9)
c(A)	13.702(2)	16.342(4)	9.208(5)
a(°)			71.57(5)
βĈ			105.81(5)
γ ^(°)			81.82(5)
$\dot{V}(\dot{A}^3)$	4264	4322	1078
$d_{obc}(g/cm^3)$	1.50	1.43	not measured
$d_{aa1a}(g/cm^3)$	1.49	1.45	1.43
Z	8	4	2
$\frac{-}{\mu(cm^{-1})}$	9.83	9.61	9.69
M	480.57	945.14	464.57

TABLE I						
Crystal data for the three oxomol	lybdenum complexes					

Crystal Data

Precession photographs were used to determine the approximate crystallographic parameters of all three compounds and the possible space groups, listed in table I, were determined from the observed systematic extinctions. The refined unit cell dimensions and their estimated standard deviations were obtained at room temperature $(20 \pm 2^{\circ})$ with MoKa radiation $(\lambda = 0.70926 \text{ Å})$ using the method outlined by Busing for four circle diffractometers.⁷ The experimental densities were measured by flotation in mixtures of cyclohexane and bromoform.

Data Collection

The available crystals were shaped into cubes to record the intensities. In all cases, the edges of the

cube were approximately 200 microns. The fragments were then sealed in Lindemann glass capillaries and mounted on a rotation free goniometer head. No special precautions were required except for compound C, which is very air sensitive and had to be cut and sealed under argon. All quantitative data were obtained from a four-circle Picker diffractometer controlled by a PDP-8I computer, using graphite monochromated MoKa radiation. The mono-chromator was set at a 2θ angle of 11.84° ($\theta = 5.57^{\circ}$). The refined parameters listed in Table I and the orientation matrices were obtained using standard Picker-supplied routines.

Intensity data were collected by use of the θ -2 θ scan technique with a scan rate of 2°/min. The scan ranges used are listed in Table II. In all cases, stationary background counts were recorded for 20 sec. at each end of the scan. Attenuators were used

TABLE II	
----------	--

Summary of data collection and least-squares structure refinement parameters for the three oxomolybdenum complexes

	Α	В	С
Scan range for data collection (°)	1.6	2.2	1.6
Total number of reflections recorded	6147	4245	4174
20 maximum	60.0	50.0	50.0
$\sigma(I)/I$, acceptance criterion for data reduction	0.40	0.33	0.40
number of reflection with $I > \sigma(I)/I$	2796	2142	2346
Final p value	0.06	.05	0.10
$R_1 = \Sigma(F_0 - F_c)/\Sigma + F_0 $	0.052	0.052	0.063
$R_{2} = (\Sigma w (F_{0} - F_{c})^{2} / \Sigma w F_{0} ^{2})^{\frac{1}{2}}$	0.074	0.065	0.089
Rejection limit n in the expression $\Delta F < n\sigma + F_0$	4.0	5.0	5.0
Number of reflections with $\Delta F > n\sigma F_{\alpha} ^{a}$	65	31	14
R ₁ same as above excluding rejects	0.047	0.048	0.060
R_2 same as above excluding rejects	0.056	0.052	0.078
e.s.d. of a unit weight observation	1.185	1.194	1.279

^a Low intensity reflections believed to be in error because of counting statistics.

whenever the scan count exceeded 7000 counts/sec. The intensities of three standard reflections were monitored at intervals of 70 measurements throughout the data collections for compounds A and B and 50 measurements for compound C. In the first two recordings the stability of the standard intensities was excellent and constant within two percent. In the case of compound C, however, these intensities dropped linearly by 20% in the time required to record all intensities and it was necessary to rescale them. This was done by least-squares using a local program.⁸ A standard deviation was assigned to each measured intensity using the expression:

$$\sigma(I) = (C + (t_b)^2 (B_1 + B_2) + (pI)^2)^{\frac{1}{2}}$$

where C is the scan count, B_1 and B_2 are background counts, t_c and t_b are respectively scan and background times and p is an empirical coefficient of the net count I.⁹ The value of p and other relevant parameters of the data collections are listed in Table II. No absorption corrections were applied in view of the small crystal dimensions and small linear absorption coefficients (see Table I).

Structure Solution and Refinement

Three dimensional Patterson maps were computed for each compound. The interpretation of the vector map for compound A was straightforward. Similarly, for

compound C, the vector map readily indicated that the correct space group was PI. In the case of compound B, the interpretation of the Patterson map was a little more difficult. The existence of a strong Harker plane in the Patterson map however, indicated that the correct space group was ^Dca2₁. The vector map was successfully interpreted in this space group, yielding the position of the two independent molybdenum atoms. Since the intensities had been recorded with a choice of axis permitted in Pbcm, the h and k indices of all reflections were permuted to conform to the convention adopted in the 'International Tables for X-Ray Crystallography¹⁰ The crystal parameters listed in Table I for compound B are then those required in the space group $Pca2_1$. The choice of this space group was confirmed by successful refinement of the structure. Fourier maps computed in each case using the coordinates so obtained for the molybdenum atoms revealed the positions of all other non-hydrogen atoms.

In all structure factor calculations, the atomic scattering factors used were those tabulated by $Moore^{1.1}$ using the development of Pepinsky.^{1.2} The effects of anomalous dispersion were included for the molybdenum and sulfur atoms; the values of $\Delta f'$ and $\Delta f''$ are those given in the 'International Tables for X-Ray Crystallography'.^{1.3} Atomic coordinates and individual anisotropic thermal parameters were refined by full-matrix least-squares using the program

TABLE IV Fractional coordinates and anisotropic temperature factors for $MoO_2(S_2CN(C_3H_2)_2)_2$ (x10⁵)

										_						
	x	У		Z		βבנβ	ß	2 2	β₃	3	β _ב	2	β٦	3	β2	3
MO	10350(2)	136251	2)	15135(2)	3431 2	291 (2)	404 C	2)	-33(2)	72(2)	-421	2)
61	10520(10)	1616(7)	A191(10)	524(7	2621	43	4116	73	-53(5)	63(7)	8(5)
27	166721 8	25293(7)	17889(10)	3251 5	2921	4)	6181	9)	35(43	28(61	-411	5)
51	26074(8)	12793(7)	13564 (10)	375(6	2501	5)	601(- 9)	41(4)	17(6)	-261	5)
E.L.	113307 101	139451	7)	-4367(10)	5201 7	258(4)	433(7)	54(5)	65(6)	S(5)
01	102061 281	9575(251	26181(281	6181 23	383(16)	3731	21)	-116(17)	136(20)	-161	16)
02	13041 25	17765(23)	14055(29)	307(17	4011	17)	6901	30)	5(14)	97(19)	-160(191
C1	262591 31	21691(25)	16640(34)	304/ 21	2471	16)	3481	28)	10(16)	-13(20)	25(17)
7 2	327661 40	32914(29)	219691	4.3)	4611 29	221(17)	540(361	-1(19)	-49(27)	-9(21)
63	343011 56	33571(391	318991	50)	8411 49	326(23)	546(41)	-25(28)	-92(38)	-93(251
54	351921 45	413861	39)	349961	54)	5161 33	357(24)	8531	54)	-661	24)	-291	35)	-211(31)
65	409271 30	219421	341	15638(40)	2691 22	359(21)	433(32)	416	17)	-22(21)	-4(21)
25	437491 37	226261	37)	5214(45)	3431 25	4241	24)	471 (33)	611	20)	401	25)	72 (24)
~~~	516931 43	187721	43)	4535(	56)	4661 33	455(	29)	5821	53)	1471	26)	2110	34)	15(	331
ČA.	118441 30	48881	30)	-34781	37)	2421 21	2870	15)	388(	29)	-14(	16)	28(	20)	21(	19)
60	144921 34	-7142(	29)	-9439(	41)	338( 24	2180	16)	475(	33)	-25(	36)	-37(	22)	-431	19)
C10	232201 39	-8810(	321	-6923(	46)	3941 27	265(	19)	7281	44)	33(	19)	8(	29)	-7(	24)
<b>C11</b>	244991 45	-164301	34)	-6347(	50)	5491 34	289(	21)	753(	45)	5(	231	43(	36)	32(	261
C12	144501 34	3135(	32)	-209351	401	3411 24	3280	21)	338(	291	-14(	18)	-271	21)	-231	20)
C13	67591 43	) 2160(	44)	-270511	451	4321 30	6140	34)	458(	38)	-40(	27)	-120(	29)	45(	29)
C14	R4491 52	1 40201	4.93	-377211	50)	7281 45	557(	33)	436(	37)	821	31)	-74(	32)	30(	291
V14	32866( 27	1 253051	25)	17991(	30)	2941 17	276(	15)	409(	24)	371	15)	-33(	18)	0(	161
12	13357( 29	547(	22)	-10961(	33)	3021 15	2110	14)	433(	261	-100	13)	14(	18)	-7(	16)

SFLS-5.¹⁴ The correlation matrix for compound B revealed the existence of strong correlation terms between the z coordinates of the  $Mo_2O_3S_8$  skeleton. Since the number of parameters exceeded the maximum allowed by the program it was decided to continue the refinement using blocks as large as possible. To this end, the molecule was divided into three parts: all molybdenum, sulfur, oxygen, nitrogen and CS₂ carbon atoms were first refined for two cycles; the two ligands bonded to molybdenum  $Mo_1$  were then refined for two cycles and, finally, the two ligands bonded to  $Mo_2$  were refined in the same manner. This procedure was repeated until convergence occured. In all least-squares computations,

the function minimized was  $\Sigma w(|F_o| - |F_c|)^2$ , where  $|F_o|$  and  $|F_c|$  are the observed and calculated structure factors. The weight w was taken as  $1/\sigma^2(|F_o|)$ . The final R factors and other relevant refinement parameters appear in Table II.

Fourier maps computed at this stage revealed the positions of some hydrogen atoms, but these were not included in the refinements. No other peaks higher than  $0.5e/Å^3$  were detected.

All computations were conducted on a Univac 1108 computer. Other programs used include ORTEP, by C. K. Johnson¹⁵ for drawings and local programs for Fourier and least squares planes.⁸

Tables III, IV and V contain the observed and

TABLE VII Fractional coordinates and anistropic temperature factors for  $Mo_2O_3(S_2CN(C_3H_2)_2)_4$  (x10⁵)

	x	У	Z	β11	β22	β33	β ₁₂	β ₁₃	β ₂₃
M01	36650( 7)	20917( 10)	65629( 29)	211( 4)	488( 9)	223( 5)	63( 6)	-11( 5)	-30( 7)
MOZ	501851 //	1/7/0( 0)	776801 871	252( 47	633/ 34)	5747 031	301 01	111 DJ	
51	27651( 21)	29733( 31)	/ 30001 431	252( 14/	6031 311	4401 231	1(10)	521 157	-631 231
52	398321 217	61001 311	60010( 42)	510( 15)	503( 31)	302( 20)	-52( 17)	031 197	-105( 50)
53	294091 201	05271 321	52015( 40) 52015( 40)	383/ 161	502( 31)	400( 21)	-36 161	-100/ 16)	501 201
54	45441 031	34676/ 311	82/331 407	333( 16)	5661 301	4491 211	-201 107	-127( 10)	501 201
50	430111 231 57148/ 331	31906( 31)	544231 411	3251 151	547( 32)	4681 221	15( 17)	-Ro( 16)	-17( 21)
50	571401 227	159987 331	344231 411	263( 13)	6901 31)	338( 19)	-507 177	30(13)	-11 21
51	422831 211	9154( 34)	40616( 39)	283/ 15)	809( 35)	3331 201	-141( 18)	80( 14)	-127( 22)
20	43355( 59)	19033( 72)	576451 781	300/ 34)	398( 73)	3487 451	-21 ( 19)	28( 33)	-1061 471
01-2	199271 591	15144( 80)	737371 721	357( 40)	676( 84)	296( 51)	105( 08)	-361 381	-138( 55)
02	55459( 63)	9281( 82)	54280( 78)	3971 44)	534( 78)	420( 58)	26( 48)	-2(43)	26( 58)
C1	32577( 74)	40092(118)	72895(100)	2441 51)	556(111)	385( 77)	-3( 61)	-72( 54)	7( 79)
č2	25679( A7)	49596(136)	A2524(110)	2211 50)	884(126)	527( 88)	101( 72)	131( 61)	14(101)
<b>C3</b>	28635( 93)	47977(102)	91691(110)	307( 58)	1153(166)	4041 861	471 831	47(65)	=35(100)
C4	22776(105)	49535(142)	97168(114)	4851 851	797(136)	559(114)	-66( 90)	143( 70)	-177(101)
Č5	360421 951	57179(118)	75836(123)	4741 67)	354(102)	670(113)	50( 76)	-102( 78)	165( 83)
c6	33109(148)	65271 (208)	72589(203)	878(123)	2108(249)	1659(189)	-836(149)	-516(134)	356(196)
C7	28266(183)	65201 (203)	66131(195)	1321(187)	1665(279)	1165(170)	-52(185)	-482(172)	492(203)
Č8	26271( 71)	12277(104)	53886( 97)	197( 45)	4871 991	349( 71)	76( 57)	-13( 49)	14( 74)
Č9	200201 89)	13182(123)	40856(113)	3541 62)	878(140)	4161 82)	-25( 78)	-65(63)	65( 90)
Cio	13216( 93)	19582(134)	42486(109)	3391 591	1012(149)	446( 84)	112( 87)	221 61)	-76( 95)
CII	7036(109)	13636(178)	44203(143)	430( 81)	1592(228)	722(129)	-100(109)	291( 84)	-233(140)
C12	21203( 78)	-3103(114)	48716(119)	2471 48)	672(122)	637(103)	-84 ( 62)	29( 65)	-120( 94)
C13	26272( 95)	-8361(106)	43042(105)	4761 74)	472(106)	427 ( 94)	76( 73)	148( 68)	-111( 80)
C14	24829(126)	-19949(199)	43817(131)	7091 841	333( 95)	808(124)	7( 99)	-76( 99)	-39( 92)
C15	518761 631	39868( 93)	49384(101)	242( 49)	304( 90)	309( 59)	47( 45)	-31(51)	-114( 74)
C16	47879( 97)	56843(119)	46926(193)	501( 76)	499(119)	489( 92)	50( 74)	-21( 65)	181( 80)
C17	50357( 97)	58692(139)	37390(118)	388( 65)	947(148)	505( 92)	-48( 86)	61(71)	268( 95)
C18	44782(113)	65037(145)	32649(131)	631( 90)	954(159)	685(120)	331(100)	95(87)	492(115)
C19	57740( 89)	54197(118)	55317(110)	382( 65)	641(122)	489( 93)	-155( 72)	-7( 64)	-150( 88)
C20	54315( 97)	57208(131)	63994(10A)	498( 71)	833(136)	403( 92)	-301( 94)	-38( 70)	-199( 90)
C21	59722(125)	62160(192)	69799(139)	543( 83)	1705(239)	605(119)	0(123)	-1991 86)	-194(138)
C22	48495( 78)	, 10010(102)	33012( 93)	346( 62)	394( 97)	320( 70)	0( 59)	-23( 52)	-15( 67)
C23	53130( BO)	6021(113)	19631( 89)	343( 53)	617(113)	237( 61)	-10( 65)	16( 51)	-49( 68)
C24	52260( 71)	15579(109)	14113( 95)	266( 45)	588(101)	328( 71)	93( 57)	43( 46)	61( 70)
C25	57795(100)	14816(134)	7318(109)	526( 78)	959(153)	289( 73)	61( 89)	59( 66)	89( 86)
C26	40875( 86)	1093(121)	234201 991	388( 58)	640(120)	346( 82)	-126( 75)	-76( 58)	76( 80)
C27	41056(101)	-10064(118)	25174(104)	552( 76)	487(113)	369( 79)	501 771	-71( 68)	-61( 81)
C28	34701(105)	-15013(139)	21935(122)	562( 82)	1011(155)	465( 92)	-397( 94)	-43( 73)	-148(100)
N1	31306( 63)	48721( 97)	76715( 82)	268( 41)	481( 91)	533( 77)	74( 55)	~50( 46)	-136( 70)
N2	22602( 61)	7583( 86)	48197( 74)	291( 43)	484( B7)	310( 64)	-73( 49)	23( 42)	801 561
N3	52436( 59)	49692(102)	50001( 93)	317( 46)	735(100)	391( 57)	7( 52)	117( 54)	-100( 84)
114	47582( 57)	6149( 82)	25753( 72)	240( 38)	463( 77)	286( 57)	-60( 44)	27( 37)	- <u>27(</u> 54)

TABLE VIII

Fractional coordinates and anisotropic temperature factors for  $MoO(S_2CN(C_3H_7)_2)_2$  (x10⁵).

	x	У	Z	βці	β22	Взз	β _{1 2}	β13	β ₂₃
MO	10891( 7)	23279( 7)	41017( 7)	971( 10)	951(7)	1147( 11)	-57( 6)	317(7)	-378( 7)
\$1	15237( 22)	34995( 19)	17585( 25)	1440( 30)	913( 19)	1636( 34)	-307( 18)	481( 25)	-520( 21)
52	-4560( 23)	21532( 22)	17305( 25)	1283( 29)	14971 261	1459( 33)	-599( 22)	455( 25)	-444( 24)
53	16097( 25)	3786( 23)	58034( 32)	1214( 31)	1277( 25)	2307( 46)	-524( 22)	125( 29)	-6( 27)
54	35460( 23)	17540( 19)	57581( 28)	1286( 28)	875( 19)	20121 391	-297( 18)	1821 26)	-417( 22)
0	1707( 76)	31481( 69)	47418( 76)	1704(100)	1743( H4)	1598(103)	247( 72)	326( 82)	-709( 79)
C1	2511( 84)	307501 691	5614( 89)	1112(101)	855( 72)	1205(117)	-38( 67)	284( 89)	-313( 75)
C2	6938( 95)	40881( 72)	-19010(101)	1457(123)	8201 74)	1505(133)	-21( 75)	728(107)	-135( 82)
C3	20845(101)	33931( 80)	-18451(113)	1445(125)	1011( 84)	1875(158)	-245( 82)	647(115)	-480( 95)
C4	27188(148)	41953(117)	-29222(183)	2462(215)	1541(127)	4217(337)	-1136(140)	2257(235)	-1145(178)
C5	-10581(102)	29072( 91)	-19395(105)	1439(129)	1414(106)	1381(137)	-453( 94)	330(108)	~615(101)
63	-25355(135)	38002(121)	-27158(175)	1561(169)	1691(152)	3243(288)	-422(127)	-373(171)	-163(164)
C7	+35718(185)	33649(195)	-37887(231)	2432(271)	3029(281)	3912(398)	-1290(225)	-390(255)	-708(274)
60	33511( 89)	4154( 74)	64831(105)	1098(109)	797( 73)	1756(144)	-222( 73)	162(103)	-192( 85)
69	41310(139)	-16224(138)	82902(179)	1891(188)	2135(181)	3392(294)	-729(148)	856(193)	-1583(203)
210	42949(169)	-21454(156)	71927(200)	2358(241)	2319(214)	3660(361)	-205(178)	1092(239)	-1097(237)
211	42336(182)	-34797(104)	83522(276)	3093(302)	716(100)	7639(643)	-877(145)	1402(349)	-611(204)
:12	59048(108)	-3702( 89)	76051(142)	1321(133)	1095( 96)	2897(228)	-198( 99)	320(136)	-799(123)
13	64559(118)	-1558( 95)	91589(149)	1630(155)	1141(104)	2841(229)	-215(101)	556(152)	-615(123)
214	80238(113)	-1138(117)	94059(185)	1066(132)	1699(143)	4441(349)	-534(110)	302(167)	-1251(194)
N1	-3301 69)	33477( 59)	-10229( 76)	1138( 86)	9421 62)	1207( 99)	-151( 58)	258( 75)	-326( 65)
112	44127( 82)	-4516( 65)	73365(118)	1176(101)	696( 62)	3451(200)	-3831 66)	182(113)	-267( 90)

computed structure factors for all reflections used in the refinement of compounds A, B and C respectively.¹⁶ Final positional and thermal parameters are listed in Tables VI, VII and VIII.

### DESCRIPTION OF THE STRUCTURES

# I Bis-(oxo-di-n-propyldithiocarbamato) molybdenum VI and Oxo-bis-(di(oxo-di-n-propyldithiocarbamato) molybdenum V).

The structure of many dioxomolybdenum VI complexes are presently known.¹⁷ Of particular interest in the present case is that of di(oxo-diethyldithiocarbamato) molybdenum VI.¹⁸ Like all other molybdenum VI dioxo complexes, it presents a deformed octahedral structure, with two oxygen atoms in cis position. The present (A) complex possesses a similar geometry. The only noteworthy difference is the longer Mo-O bond length observed in this work. This discrepancy is attributed to imprecisions introduced by the smaller data set and different data collection method used by Kopwillem.

The structure of the molybdenum V complex (B) is similar to that previously reported by Cotton for  $Mo_2O_3$  ( $S_2COC_2H_5$ )₄.¹⁹ The distances observed in

TABLE IX Molecular dimensions in  $MoO_2(S_2CN(C_3H_7)_2)_2$  (A)

a) bond lengt	hs (Å)		
Mo-S	2.446(2)	$C_3 - C_4$	1.533(10)
Mo-S,	2.457(2)	C. C.	1.510(8)
Mo-S	2.621(2)	$C_{6} - C_{7}$	1.515(9)
MoS₄	2.681(2)	$C_8 - S_1$	1.728(5)
Mo-O	1.695(5)	$C_{\star} - S_{\star}$	1.706(5)
Mo-O,	1.696(5)	$C_{\mathbf{x}} - N_{\mathbf{y}}$	1.334(6)
C ₁ -S,	1.736(5)	$\tilde{C_{9}} - N_{2}$	1.470(6)
$C_1 - S_3$	1.722(5)	$C_{1,2} - N_2$	1.463(7)
$C_1 - N_1$	1.302(7)	$C_{9} - C_{10}$	1.520(8)
$C_2 - N_1$	1.485(7)	$C_{10} - C_{11}$	1.521(9)
$C_{s} - N_{1}$	1.490(7)	$C_{12} - C_{13}$	1.538(9)
C, -C,	1.526(9)	$C_{13} - C_{14}$	1.530(9)
b) bond angle	es (°)		
$S_1 - Mo - S_2$	151.1(1)	$S_3 - C_1 - N_1$	123.7(2)
$S_1 - Mo - S_3$	84.4(1)	$C_1 - N_1 - C_2$	122.0(4)
$S_1 - Mo - S_4$	68.4(1)	$C_1 = N_1 = C_5$	121.2(3)
S ₂ MoS ₃		$C_2 - N_1 - C_5$	116.8(3)
$S_2 - Mo - S_4$	96.2(1)	$N_{1} - C_{2} - C_{3}$	110.3(4)
$S_3 - Mo - S_4$	81.9(1)	$N_1 - C_5 - C_6$	111.1(3)
$O_1 - Mo - O_2$	105.7(1)	$C_{2} - C_{3} - C_{4}$	111.4(4)
$O_1 - Mo - S_1$	86.3(1)	C 5 C 6 C 7	110.3(4)
$O_1 - Mo - S_2$	105.5(1)	$S_1 - C_8 - S_4$	114.5(2)
$O_1 - MO - S_3$	93.5(1)	$S_1 - C_8 - N_2$	121.3(2)
$O_1 - MO - S_4$	154.5(1)	$S_4 - C_8 - N_2$	124.2(2)
$O_2 - MO - S_1$	113.5(1)	$C_8 - N_2 - C_9$	120.9(3)
$O_2 - MO - S_2$	89.0(1)	$C_8 - N_2 - C_{12}$	122.7(3)
$O_2 - MO - S_3$	154.2(1)	$C_9 - N_2 - C_{12}$	116.3(3)
$O_2 - MO - S_4$	87.5(1)	$N_2 - C_9 - C_{10}$	110.9(3)
$S_2 - C_1 - S_3$	112.7(2)	$N_2 - C_{12} - C_{13}$	111.6(3)
$S_2 - C_1 - N_1$	123.7(2)	$C_{12} - C_{13} - C_{14}$	110.0(4)
		$C_9 - C_{10} - C_{11}$	110.3(4)

TABLE XMolecular dimensions in  $Mo_2O_3(S_2CN(C_3H_7)_2)_4$  (B)

a) bond lengti	hs (Å)		
$M_{0}$ , $-0$ .	1.666(12)	N _a –C _a	1.505(22)
$M_{0}$ , $-0$ .	1.676(12)	NC.	1.470(19)
$Mo_2 = O_2$	1.870(13)	$C_2 = C_1 $	1.611(25)
$Mo_1 = 0$	1.856(13)	-10	1.480(29)
$MO_2 O_{1-2}$ $MO_3 S_{1-2}$	2 515(6)	$C_{10} = C_{11}$	1533(24)
$MO_1 - S_1$ Mo S	2.515(0) 2.440(5)	$C_{12} = C_{13}$	1.594(21)
$MO_1 - S_2$ Mo S	2.440(5)	S = C	1.695(15)
$MO_1 = S_3$ $MO_1 = S_3$	2.471(3)	$S_5 = C_{1,5}$	1.093(15) 1.703(15)
$MO_1 - S_4$	2.007(7)	$S_6 - C_{1S}$	1.705(13) 1.224(19)
$MO_2 - S_5$	2.087(5)	$C_{15} = N_3$	1.334(10)
$MO_2 - S_6$	2.491(5)	$N_3 - C_{1.6}$	1.467(22)
$MO_2 - S_7$	2.536(7)	$N_3 - C_{19}$	1.485(22)
$MO_2 - S_8$	2.440(6)	$C_{16} - C_{17}$	1.513(26)
$S_1 - C_1$	1.681(16)	$C_{17} - C_{18}$	1.590(28)
$S_2 - C_1$	1.762(16)	$C_{19} - C_{20}$	1.621(25)
$C_1 - N_1$	1.344(21)	$C_{20} - C_{21}$	1.571(30)
$N_1 - C_2$	1.460(22)	$S_{2} - C_{22}$	1.677(16)
$N_1 - C_2$	1.478(21)	$S_{1} - C_{2}$	1.742(16)
C, C,	1.621(26)	C	1.308(19)
c	1 472(27)	N -C	1.478(19)
C - C	1.343(34)	$N_4 - C_2$	1.530(20)
ດ້ມຕໍ່	1 420(38)	C = C	1 583(21)
	1.420(30) 1.674(16)	$C_{23} - C_{24}$	1.556(23)
$S_3 = C_8$	1.074(10) 1.706(15)	$C_{24} - C_{25}$	1.530(23) 1.533(22)
$S_4 \sim C_8$	1.700(13)	$C_{26} - C_{27}$	1.555(22) 1.509(27)
C ₈ - N ₂	1.555(17)	C ₂₇ - C ₂₈	1.309(27)
b)bond angles	s (°)		109 6(1 4)
$O_1 - MO_1 - O_1$	102.7(5)	$N_1 - C_2 - C_3$	108.0(1.4)
$O_2 - MO_2 - O_1$	103.1(6)	$N_1 - C_5 - C_6$	113.4(1.9)
$MO_1 - O_{1-2} - I$	$MO_2 1/8.1(7)$	$C_2 - N_1 - C_5$	118.4(1 3)
$S_1 - MO_1 - S_2$	70.9(2)	$C_2 - C_3 - C_4$	105.3(1.5)
$S_1 - MO_1 - S_3$	96.3(2)	$C_5 - C_6 - C_7$	125.1(2.7)
$S_1 - Mo_1 - S_4$	84.1(2)	$S_{3} - C_{8} - S_{4}$	116.2(9)
$\mathbf{S}_2 - \mathbf{MO}_1 - \mathbf{S}_3$	155.9(2)	$S_3 - C_8 - N_2$	121.8(1.1)
$S_{e} - Mo_{1} - S_{4}$	90.5(2)	$S_4 - C_8 - N_2$	121.9(1.1)
$S_3 - Mo_1 - S_4$	67.5(2)	$C_{8} - N_{2} - C_{9}$	119.9(1.2)
$S_5 - Mo_2 - S_6$	67.7(2)	$C_8 - N_2 - C_{12}$	121.7(1.2)
$S_{5} - Mo_{2} - S_{7}$	82.3(2)	$N_{2} - C_{3} - C_{10}$	114.4(1.3)
$S_{c} - Mo_{b} - S_{c}$	87.2(2)	$N_{1} - C_{1} - C_{1}$	107.3(1.3)
S Mo S.	95.8(2)	$C_{0} - N_{0} - C_{10}$	118.4(1.2)
S Mo S.	153 2(2)	C C C	114.8(1.6)
$S_{m} - M \rho_{m} - S_{m}$	70.6(2)	$C_{1} = C_{1} = C_{1}$	106.9(1.4)
O = MO = S	94 6(4)	S = C = S	116 5(8)
$O_1 MO_1 S_1$	108.8(4)	$S_{1} = C_{1} = N$	120.8(1.1)
$O_1 = MO_1 = S_2$ $O_2 = MO_1 = S_2$	921(4)	$S_{5} = C_{15} = N_{3}$	120.0(1.1) 122.7(1.1)
$O_1 \sim MO_1 - S_3$	150.2(4)	$S_6 = C_{15} = R_3$	124.7(1.1)
$0_1 - M0_1 - S_4$	159.2(4)	$C_{15} = N_3 \sim C_{16}$	124.7(1.0)
$O_2 - MO_2 - S_5$	159.7(5)	$N_3 - C_{16} - C_{17}$	109.0(9)
$O_2 - MO_2 - S_6$	92.8(4)	$N_3 - C_{19} - C_{20}$	108.9(9)
$O_2 - MO_2 - S_7$	94.5(4)	$C_{16} = N_3 = C_{19}$	114.6(1.0)
$O_2 - MO_2 - S_B$	110.8(4)	$C_{19} - C_{20} - C_{21}$	110.8(1.1)
$O_{1-2} - MO_1 - S_1$	$S_1 = 157.6(4)$	$S_{7} - C_{22} - S_{8}$	114.6(9)
$O_{1-2} - MO_1 - S_1$	$S_{z} = 89.8(4)$	$S_7 - C_{22} - N_4$	123.7(1.1)
$O_{1-2} - MO_1 - S_1$	$S_3 = 97.2(4)$	$S_{8} - C_{22} - N_{4}$	121.8(1.1)
$O_{1-2} - MO_1 - S_1 - S_2 - MO_1 - S_2 - S_2$	S _a 84.6(4)	$C_{2,2} - N_{4} - C_{2,3}$	121.3(9)
0,	5 85.4(4)	$C_{22} - N_4 - C_{24}$	121.3(1.0)
$O_1, -MO_2, -S$	95.9(4)	$N_{a} - C_{3} - C_{3}$	107.3(7)
$O_1$ ,M $O_2$ , -S	158.3(4)	N C C	111.8(8)
0,MoS	91.1(4)	$C_{1} - N_{2} - C_{1}$	117.3(9)
SCS.	113.3(9)	$C_{22} - C_{24} - C_{24}$	106.1(9)
$S_{1} - C_{2} - N_{2}$	124 3(1 2)	$C_{11} - C_{12} - C_{13}$	110.5(1.0)
$S_{-} = C_{-} = N$	122.4(1.2)	$C_{26} = N_2 = C_{27}$	120.6(1.0)
$C_1 = N_1 = C_1$	120 8(1 3)	$C_{15} - C_{-}C_{-}$	108 8(1 1)
$C = N = C_2$	120.0(1.3)	$C_{16} - C_{17} - C_{18}$	100.0(1.1)
$v_1 \cdot v_1 = v_5$	120.3(1.3)		

the  $Mo_2O_3S_8$  skeleton are nearly identical in both compounds. The previously reported trend in a lengthening of the Mo-S bonds trans to oxygen atoms is still observed. Other distances observed in the ligands are similar in both dithiocarbamates. The C-S bond lengths are equal within three standard deviations and the short C-N bond indicates a high degree of double bond character. The C-C bond lengths and angles compare favourably with accepted values.

The geometries of the complexes are shown in Figure 1A and 1B for the molybdenum VI and V complexes, respectively. Significant bond lengths and angles in both molecules are listed in Tables IX and X. There are no important intermolecular contacts.

# II Oxo-bis-di-n-propyldithiocarbamato molybdenum IV

The molecular geometry and numbering scheme adopted are shown in Figure 1C. Important bond lengths and angles are listed in Table XI. In the solid state, the complex adopts a square pyramidal

TABLE XI Molecular dimensions in  $MoO(S_2CN(C_1H_2)_2)$ , (C)

		1 2 3 1727	
a) bond leng	ths (A)		
MO-O	1.664(8)	C _c -C _c	1.602(14)
Mo-S	2.412(2)	$C_{4}^{2}-C_{7}^{2}$	1.541(26)
$Mo-S_2$	2.418(2)	$S_3 - C_8$	1.724(8)
$Mo-S_3$	2.413(2)	$S_4 - C_8$	1.726(9)
Mo-S ₄	2.410(2)	$N_2 - C_{\star}$	1.295(9)
$S_1 - C_1$	1.729(8)	$N_2 - C_9$	1.582(17)
$S_2 - C_1$	1.732(8)	$N_2 - C_{12}$	1.504(12)
$N_1 - C_1$	1.312(9)	$C_{9} - C_{10}$	1.396(28)
$N_1 - C_2$	1.474(11)	$C_{10} - C_{11}$	1.745(22)
$N_1 - C_5$	1.474(13)	$C_{12} - C_{13}$	1.508(18)
<i>C</i> 2 – C ₃	1.550(13)	$C_{13} - C_{14}$	1.560(16)
$C_{3} - C_{4}$	1.526(18)		
b) bond angle	es (° )		
O-Mo-S,	108.3(2)	$N_{1} - C_{2} - C_{3}$	110.0(5)
$O-Mo-S_2$	109.6(2)	N C - C	107.4(6)
O-Mo-S	111.7(2)	$C_2 - N_1 - C_5$	118.0(6)
O-Mo-S	110.3(2)	$C_{1} - C_{1} - C_{4}$	107.4(7)
SMo-S.	72.4(1)	$C_{\epsilon}^{\dagger} - C_{\epsilon}^{\dagger} - C_{2}^{\dagger}$	106.5(9)
$S_1 - Mo - S_3$	139.9(1)	$S_3 - C_5 - S_4$	111.1(2)
$S_1 - Mo - S_a$	93.0(1)	$S_{3}^{"} - C_{8}^{"} - N_{2}^{"}$	125.6(4)
$S_2 - Mo - S_3$	95.0(1)	$S_{4} - C_{8} - N_{2}$	123.0(4)
$S_2 - Mo - S_4$	140.1(1)	$C_8 - N_2 - C_9$	119.4(8)
$S_3 - Mo - S_4$	72.3(1)	$C_{8} - N_{2} - C_{12}$	122.3(6)
$S_1 - C_1 - S_2$	111.1(2)	$N_2 - C_9 - C_{10}$	98.9(8)
$S_1 - C_1 - N_1$	124.1(3)	$N_2 - C_{12} - C_{13}$	109.7(6)
$S_2 - C_1 - N_1$	124.6(3)	$C_{9} - N_{2} - C_{12}$	118.1(7)
$C_1 - N_1 - C_2$	121.0(5)	$C_9 - C_{10} - C_{11}$	98.2(9)
$C_1 - N_1 - C_5$	120.9(6)	$C_{12} - C_{13} - C_{14}$	107.0(7)

#### OXO MOLYBDENUM DITHIOCARBAMATES







FIGURE 1b Molecular geometry of  $Mo_2O_3(S_2CN(C_3H_7)_2)_4$ .

geometry. The basal plane of the pyramid is formed by the four sulfur atoms. The molybdenum atom lies 0.83 Å above this plane and the oxygen atom occupies the summit. The Mo-O line is perpendicular to the least-squares plane formed by the four sulfur atoms. There are no steric interactions in this complex, so that the four Mo-S bond lengths are identical and slightly shorter than those observed for trans sulfur atoms in the two previous complexes. Similarly, the C-S and C-N bond lengths are respectively identical in both ligands. The C-C bond lengths compare favourably with accepted values.



FIGURE 1c Molecular geometry of  $MoO(S_2CN(CH_7)_2)_2$ .

Finally the Mo-O bond is slightly shorter than that observed in the other complexes.

The only intermolecular contact shorter than 3.5 Å is between the oxygen atom and carbon C3 of a neighbouring molecule.

## DISCUSSION

Average bond lengths and standard deviations for the three molecules are assembled in Table XII.

TABLE XII Average bond lengths and deviation from the mean in the three complexes.

a) Environment of the metal atoms							
_	Α	В	С				
Mo-O _t Mo-O _t	1.695(1)	1.671(4)	1.664(8)				
$Mo-S_{ct}$ $Mo-S_{tt}$ $Mo-S_{tb}$	2.452(5) 2.651(18)	2.465(14) 2.678(5) 2.526(6)	2.414(2)				

 $O_b$  = bridging oxygen

 $O_t$  = terminal oxygen

 $S_{ct} = sulfur cis to O_t$  $S_{tt} = sulfur trans to O_t$ 

 $S_{tb}$  = sulfur trans to  $O_b$ 

b) Intraligand bond lengths.

	Α	В	С
S-C,	1.723(6)	1.705(12)	1.728(2)
N-C	1.318(9)	1.33 (6)	1.303(5)
N-C,	1.477(6)	1.484(8)	1.508(25)
C ₂ -Ċ ₃	1.524(4)	1.534(15)	1.553(14)

The values of the Mo–O bond lengths observed in the molybdenum VI dioxo complex (A) and molybdenum V complex (B) are in good agreement with previously reported values. The only structure of a mono-oxo molybdenum IV complex previously reported is that of oxo-dichloro-tris (dimethylphenylphosphine) molybdenum IV, in which a Mo–O bond length of 1.676(7) Å is reported.²⁰ This value does not differ significantly from the length of 1.664(8) Å we observe; the difference is about two standard deviations. However, the deviation is such that it is consistent with a shortening of the Mo–O bond due to a change of coordination from six to five: such a change would be expected to induce a slight shortening of the bond lengths.

The usefulness of Cotton and Wing's²¹ correlation between Mo-O bond lengths and bond orders in oxomolybdenum compounds has long been recognised.22 In the present instance, it would be particularly interesting to determine the bond order for the molybdenum IV complex (C). It has recently been shown that oxomolybdenum IV complexes similar to (C) probably undergo oxidative addition with a number of unsaturated ligands.⁵ According to Tolman's rules,²³ this requires the molybdenum IV oxo complex to be diamagnetic and to present a sixteen electrons configuration. Referring to Cotton and Wing's correlation, we find a bond order of approximately 3.0 for compound (C). In turn, this implies an electron configuration of sixteen for the molybdenum IV complex (C). It thus appears that this correlation can still give useful indications for oxo-molybdenum IV complexes.

Another point of interest is the possibility of trans influence to explain the lengthening of the Mo-S_{tt} bond lengths. Since there are large steric hindrances between the sulfur atoms, as shown by the short S-S contact distances (See Table XIII) and the deformation of the Mo-ligand angles from the ideal ninety degrees, it is not clear whether this is indeed the case. However, one notices that in the molybdenum V compound, the Mo- $\!S_{t\,b}$  bond length has a value intermediate to that of  $Mo-S_{ct}$  and  $Mo-S_{tt}$ . Since the Mo– $O_b$  bond is weaker than the Mo– $O_t$  bond by a factor of about two, one would expect less trans influence by the former oxygen. Thus, despite the fact that there exist strong steric interactions between the sulfur atoms, one cannot entirely rule out the occurence of trans influence on the basis of the present data.

Finally, one notices that the  $C_1$ -S and  $C_1$ -N bond lengths are equal in all complexes. The fact that both C-S bonds are identical within experimental

TABLE XIII Intramolecular contact distances in the three complexes (Å)

A MoO, (S,	$CN(C_1H_1)_1$		
00.	2,702	0, S,	2.960
$\mathbf{O}_1, \ldots, \mathbf{S}_n$	2.883	0, S.	3.106
0S.	3.338	S S.	3.405
0	3.205	S	3.824
0 S	3 488	S S	3 473
$O_2 \dots O_1$	5.400	0304	51115
B $Mo_2O_3(S)$	$_{2}CN(C_{3}H_{7})_{2})_{4}$		
$0, \ldots 0,, 0$	2.628	$0, \ldots 0_{1-2}$	2.747
$\mathbf{O}_1 \dots \mathbf{S}_n$	3.029	$0_{1}^{\circ} \dots S_{6}^{\circ}$	3.062
0, S,	3.305	$O_{1} \dots S_{n}$	3.085
0 <b>S</b> ,	2.930	0 S.	3.342
$\mathbf{O}_1 \dots \mathbf{S}_n$	3.091	0S.	3.224
$O_1 \circ \dots \circ S_n$	3.213	0 S.	3.345
$O_{12}$ $S_{1}$	3 121	$O_1^{1-2}$ S.	3.111
S S	3 761	S S	3 467
s s	3 588	S S	3 562
S S	2 666	C C	2 7 2 1
$\mathfrak{S}_2 \ldots \mathfrak{S}_4$	3.000	$\mathbf{S}_6 \dots \mathbf{S}_7$	5.721
C MoO(S,C	$N(C, H_{2})_{2}$		
0S.	3.332	0S.	3.374
0S.	3.363	S Š.	3,494
0.5.	3.403	S S.	3.559
<u> </u>			

errors along with the observation of the very short  $C_1$ -N bond confirms that the most important resonance form responsible for complex formation by the dithiocarbamates is



as it has previously been observed.

#### ACKNOWLEDGEMENTS

The authors want to thank L. Sajus and coworkers, from the Institut Francais du Pétrole, for the gift of crystals and also for their sustained interest in the present work.

One of us (L. R.) wishes to thank the Sous-Commission franco-québécoise à la recherche scientifique et technologique for a post-doctoral fellowship.

#### REFERENCES

- 1. Laboratoire de cristallochimie associé au CNRS.
- Chan-Chen Su, J. W. Reed and E. S. Gould, *Inorg. Chem.* 12, 337 (1973) and references cited therein.
- 3. G. Wilke, H. Schott and P. Heimbach, Angew. Chem., Int. Ed., 6, 92 (1967).
- 4. R. Barral, C. Bocard, I. Sérée de Roch and L. Sajus, Tetrahedron Letters, 17, 1693 (1972).
- P. W. Schneider, D. C. Bravard, J. W. McDonald and W. E. Newton, J. Amer. Chem. Soc., 94, 8640 (1972).
- 6. F. W. Moore and M. L. Larson, *Inorg. Chem.*, 6, 998 (1967).

- 7. W. R. Busing, Crystallographic Computing, Ed. F. R. Ahmed Munksgaard, 319 (1970).
- 8. J. Fischer, unpublished results.
- 9. P. W. R. Corfield, R. J. Doedens and J. A. Ibers, Inorg. Chem. 6, 197 (1967).
- 10. International Tables for X-Ray Crystallography, I, 115 and 145, Kynoch Press (1952).
- 11. F. M. Moore, Acta Cryst. 16, 1169 (1963).
- 12. V. Vand, P. F. Eiland and R. Pepinsky, Acta Cryst. 10, 303 (1957).
- 13. International Tables for X-Ray Crystallography, Kynoch Press (1962), 215-216.
- 14. C. T. Prewitt, "A Fortran IV full-matrix crystallographic least-squares program", SFLS5 (1966).

- 15. C. K. Johnson, "Program ORTEP", ORNL 3794 (1965).
- 16. Listings of Structure factor tables are available from the authors.
- 17. Annual Reports A, The Chemical Society, 68, 381 (1971). and references cited.
- 18. A. Kopwillem, Acta Chem. Scand. 26, 2941 (1972).
- 19. A. B. Blake, F. A. Cotton and J. S. Wood, J. Amer. Chem. Soc. 86, 3024 (1964).
- 20. L. Manojlovic-Muir, J. Chem. Soc. A, 2796 (1971).
- 21. F. A. Cotton and R. M. Wing, *Inorg. Chem.* 4, 867 (1965).
- 22. D. Grandjean and R. Weiss, Bull. Soc. France, 3040 (1967).
- 23. C. A. Tolman, Chem. Soc. Rev., 1, 337 (1972).

.